
 

 

 

 
ETSI TS 102 830 V1.1.1 (2010-03)

Technical Specification 

GRID;
Grid Component Model (GCM);
GCM Fractal Management API

�



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)2 

 

 

 

Reference 
DTS/GRID-0004-4 GCM_MgmtAPI 

Keywords 
architecture, interoperability, network, service 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

Individual copies of the present document can be downloaded from: 
http://www.etsi.org 

The present document may be made available in more than one electronic version or in print. In any case of existing or 
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). 

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive 
within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, please send your comment to one of the following services: 
http://portal.etsi.org/chaircor/ETSI_support.asp 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2010. 

All rights reserved. 
 

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered 
for the benefit of its Members. 

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. 
LTE™ is a Trade Mark of ETSI currently being registered 

for the benefit of its Members and of the 3GPP Organizational Partners. 
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association. 

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp


 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)3 

Contents 

Intellectual Property Rights ................................................................................................................................ 4 

Foreword ............................................................................................................................................................. 4 

Introduction ........................................................................................................................................................ 4 

1 Scope ........................................................................................................................................................ 5 

2 References ................................................................................................................................................ 5 

2.1 Normative references ......................................................................................................................................... 5 

2.2 Informative references ........................................................................................................................................ 5 

3 Definitions and abbreviations ................................................................................................................... 6 

3.1 Definitions .......................................................................................................................................................... 6 

3.2 Abbreviations ..................................................................................................................................................... 7 

4 Overview of the Grid Component Model (GCM) .................................................................................... 7 

5 Basic GCM component introspection ...................................................................................................... 8 

5.1 External component structure ............................................................................................................................. 8 

5.2 Component introspection API ............................................................................................................................ 9 

5.3 Interface introspection API................................................................................................................................. 9 

6 GCM component configuration .............................................................................................................. 10 

6.1 Internal component structure ............................................................................................................................ 10 

6.2 Attribute control API ........................................................................................................................................ 12 

6.3 Binding control API ......................................................................................................................................... 13 

6.4 Content control API.......................................................................................................................................... 14 

6.5 Life cycle control API ...................................................................................................................................... 15 

6.6 Collective interface control API ....................................................................................................................... 16 

6.7 Multicast control API ....................................................................................................................................... 16 

6.8 Gathercast control API ..................................................................................................................................... 17 

6.9 Migration control API ...................................................................................................................................... 18 

6.10 Monitoring control API .................................................................................................................................... 19 

6.11 Priority control API .......................................................................................................................................... 19 

7 GCM component runtime instantiation .................................................................................................. 20 

7.1 Factories API .................................................................................................................................................... 20 

7.2 Templates ......................................................................................................................................................... 21 

7.3 Bootstrap .......................................................................................................................................................... 21 

8 GCM Typing .......................................................................................................................................... 22 

8.1 Component interfaces contingency and cardinality .......................................................................................... 22 

8.2 Type system API .............................................................................................................................................. 22 

8.3 Sub typing relation ........................................................................................................................................... 24 

Annex A (normative): Java API ......................................................................................................... 25 

Annex B (informative): Namespaces .................................................................................................... 26 

B.1 Description ............................................................................................................................................. 26 

B.2 Versioning .............................................................................................................................................. 26 

Annex C (informative): Examples ......................................................................................................... 27 

C.1 Instantiation ............................................................................................................................................ 27 

C.2 Reconfiguration ...................................................................................................................................... 28 

History .............................................................................................................................................................. 30 

 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)4 

Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee GRID (GRID). 

The present document is related to documents 102-650-1 (GCM Interoperability Deployment), 102-650-2 (GCM 
Interoperability Application Description), and 102-830 (GCM Management API). 

Introduction 
The GCM has been first defined in the NoE CoreGRID (42 institutions). A reference Open Source implementation has 
been tested in the 5 previous GRID Plugtests organized from 2004 to 2008 by INRIA and ETSI. The GridCOMP EU 
project (FP6, started June 2006 to February 2009) is working to further assess and experiment with the specification. 

http://webapp.etsi.org/IPR/home.asp


 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)5 

1 Scope 
The present document describes standard API to manage GCM components at runtime in an interoperable way. It 
defines component management in a standard manner to create, introspect, monitor and reconfigure components at 
execution. 

The present document will help enterprises and laboratories to use their large-scale computer and telecom 
infrastructures with the necessary virtualization. 

Its primary audience are developers of distributed software who need to specify complex applications by composing 
existing software components. 

2 References 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. 

• For a specific reference, subsequent revisions do not apply. 

• Non-specific reference may be made only to a complete document or a part thereof and only in the following 
cases: 

- if it is accepted that it will be possible to use all future changes of the referenced document for the 
purposes of the referring document; 

- for informative references. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long term validity. 

2.1 Normative references 
The following referenced documents are indispensable for the application of the present document. For dated 
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document 
(including any amendments) applies. 

[1] ETSI TS 102 829: "GRID; Grid Component Model (GCM); GCM Fractal Architecture 
Description Language (ADL)". 

[2] ETSI TS 102 828: "GRID; Grid Component Model (GCM); GCM Application Description". 

[3] ETSI TS 102 827: "GRID; Grid Component Model (GCM); GCM Interoperability Deployment".. 

2.2 Informative references 
The following referenced documents are not essential to the use of the present document but they assist the user with 
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including 
any amendments) applies. 

[i.1] "The Fractal Component Model". 

NOTE: Available at http://fractal.objectweb.org/specification/index.html. 

[i.2] CoreGRID NoE (FP6): "Basic Features of the Grid Component Model". 

NOTE: Available at http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf. 

http://docbox.etsi.org/Reference
http://fractal.objectweb.org/specification/index.html
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf


 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)6 

[i.3] GCM: "A Grid extension to Fractal for Autonomous Distributed Components", F. Baude, D. 
Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Perez. Annals of 
Telecommunications - The Fractal Initiative, 2008. 

[i.4] "A formal specification of the Fractal component model". 

NOTE: Available at http://hal.inria.fr/inria-00338987/. 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

binding: communication path between a client and a server interface 

cardinality: property of an interface type that indicates how many interfaces of this type a given component may have 

NOTE: The cardinality is singleton, collection, multicast or gathercast. 

client interface: component interface that emits operation invocations 

complementary interface: of an interface I, a component interface with the same name, signature, contingency, and 
cardinality as I, but with opposite role and visibility (external or internal) 

component: runtime entity exhibiting a recursive structure and reflexive capabilities 

NOTE: A component is composed of a set of controllers and a content. A component has well defined access 
points called interfaces, and provides introspection and control capabilities (intercession) to other 
components. 

component interface: access point to a component, i.e. a place where operation invocations can be emitted or received 

composite component: component that exposes its content (inner structure) 

content: one of the two parts of a component, the other one being its controller 

NOTE: A content is an abstract entity controlled by a controller. The content of a component is (recursively) 
made of sub components and bindings. 

contingency: property of an interface, indicates if the functionality of this interface is guaranteed to be available or not, 
while its component is running 

NOTE: The contingency is either optional or mandatory. 

control interface: component interface that manages a "non functional aspect" of a component, such as introspection, 
configuration or reconfiguration, and so on 

NOTE: By convention, control interfaces are server interfaces whose name ends with -controller, or is equal to 
component. 

controller: one of the two parts of a component, the other one being its content 

NOTE: A controller is an abstract entity that embodies the control behaviour associated with a particular 
component. A controller can exercise an arbitrary control over the content of the component it is part of 
(intercept incoming and outgoing operation invocations for instance). 

external interface: component interface that is only accessible from outside the component 

factory: component that can create other components 

NOTE: Generic factories can create several kinds of components, while standard component factories create only 
one kind of components. 

http://hal.inria.fr/inria-00338987/


 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)7 

functional interface: component interface that corresponds to a provided or required functionality of a component, as 
opposed to a control interface 

intercession: ability of a component (seen as a program) to modify its own execution state; or to alter its own 
interpretation or semantics 

internal interface: component interface that is only accessible from inside the component, i.e. from its sub components 

introspection: ability of a component (seen as a program) to observe and reason about its own execution state 

language interface: type made of several operation declarations, i.e. a Java interface for the Java API of the GCM 

mandatory interface: component interface whose functionality is guaranteed to be available, while the component is 
running 

optional interface: component interface whose functionality is not guaranteed to be available, while the component is 
running 

primitive component: component with some control interfaces, but that does not expose its content 

reflection (reflective capabilities): ability of a component (seen as a program) to manipulate as data the entities that 
represent its execution state during its own execution 

NOTE: This manipulation can take two forms: introspection and intercession. 

role: property of a component interface, indicates if this interface is a client or server interface 

server interface: component interface that receives operation invocations 

shared component: component that is contained in several super components 

signature: of a component interface, is the name of the language interface type corresponding to this component 
interface 

sub component: component that is contained in another component 

super component: relatively to a (sub) component, a component that contains this (sub) component 

NOTE: Due to component sharing, a component may have several super components. 

template: special kind of factory that creates components that are "isomorphic" to itself 

type: set of structural properties common to a set of entities (components and interfaces for instance) 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

ADL Architecture Description Language 
API Application Programming Interface 
GCM Grid Component Model 

4 Overview of the Grid Component Model (GCM) 
By enforcing a strict separation between interface and implementation and by making software architecture explicit, 
component-based programming can facilitate the implementation and maintenance of complex distributed software 
systems.  



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)8 

Existing component-based frameworks and architecture description languages, however, provide only limited support 
for extension, adaptation, and distribution. These limitations lead to major drawbacks: they prevent the easy and 
possibly dynamic introduction of different control facilities for components such as non-functional aspects; they prevent 
application designers and programmers from making important trade-offs such as degree of configurability vs 
performance and space consumption; and they can make difficult the use of these frameworks and languages in 
different environments, including distributed systems. 

The Grid Component Model (GCM) extends the Fractal component model. As an extension of Fractal the GCM reuses 
the Fractal concepts and features: we do not distinguish in the present document what is part of the basic Fractal 
component model and what is an extension (excepted for their namespaces, see annex B). We specify the whole 
features making the GCM. The GCM model alleviates the above problems by introducing a notion of component 
endowed with an open set of control capabilities. In other terms, components in GCM are reflective, and their reflective 
capabilities are not fixed in the model but can be extended and adapted to fit the programmer's constraints and 
objectives, Also the GCM handle the component distribution over a set of resources by introducing location information 
and parallel communication mechanisms. 

Main goals of the GCM component model are to implement, deploy and manage (i.e. monitor and dynamically 
reconfigure) complex and distributed software systems. These goals motivate the main features of the GCM model: 
parallel communications (predefined and customizable communication patterns), remote communication (fully 
transparent remote binding: a remote component can be used as a local one), composite components (to have a uniform 
view of applications at various abstraction levels), introspection capabilities (to monitor a running system), and 
configuration and reconfiguration capabilities (to deploy and dynamically reconfigure an application). But another goal 
of the GCM is to be applicable to many software. 

The present document is the 4th part of the GCM specification; the 3 previous parts of the standard have been published 
by ETSI [1], [2] and [3]. More explanations will be found in the following white papers: [i.1], [i.2], [i.3] and [i.4]. 

The GCM API provides instantiation, reflection, intercession, introspection, configuration capabilities at run time. Not 
all the controllers exposing this API are mandatory. As a result of this modular and extensible organization (anyone is 
free to define its own control interfaces, in order to provide new introspection and intercession capabilities) GCM 
components can be used in very different situations and cover a large set of application needs. 

The present document describes the Java API of the GCM. Each clauses contains a part of the normative API, and the 
whole API is included in the Annex A. 

5 Basic GCM component introspection 
A GCM component provides introspection functions to introspect its external features, i.e. its boundary. This clause 
defines more precisely the external features of GCM components, and specifies the interfaces related to the 
introspection of these features. The interfaces related to the introspection (and reconfiguration) of the internal features 
of GCM components are specified in the next clause. 

5.1 External component structure 
Depending on the level of observation, or scale, a GCM component can be seen as a black box or as a white box. When 
seen as a black box, i.e. when its internal organization is not visible, the only visible elements of a GCM component are 
some access points to this black box, called its external interfaces (see figure 1). Each interface has a name, in order to 
distinguish it from the other interfaces of the component. All the external interfaces of a component must have distinct 
names, but two interfaces in two distinct components may have the same name. One may distinguish two kinds of 
interfaces: a client (or required) interface emits operation invocations, while a server (or provided) interface receives 
them. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)9 

 

Figure 1: External view of a GCM component 

The interfaces of a component can be introspected with two language interfaces, specified in clauses 5.2 and 5.3: one to 
get the list of interfaces of a component, and one to introspect the interfaces themselves. 

5.2 Component introspection API 
In order to discover the external interfaces of a component, a component provides an interface that implements the 
Component interface (see figure 2). This language interface provides two operations named getFcInterfaces and 
getFcInterface, that can be used to retrieve the interfaces of the component. The first operation takes no arguments, and 
returns an array containing all the external interfaces, either client or server (which include non functional interfaces), of 
the component, including the Component interface. The second operation takes the name of an interface as parameter, 
and returns this interface, if it exists. 

package org.objectweb.fractal.api; 
interface Component { 
   Object[] getFcInterfaces (); 
   Object getFcInterface (String itfName) throws NoSuchInterfaceException; 
   Type getFcType (); 
} 
interface Type { 
   boolean isFcSubTypeOf (Type t); 
} 
 

Figure 2: Component introspection API 

The getFcInterfaces and getFcInterface operations return references that give access to requested interfaces. In other 
words, the references returned by these operations can be used directly, after an appropriate cast, to invoke operations 
on the component's server interfaces (no explicit binding is needed). For example, if a component has a server interface 
named account implementing the language interface Account, then the getBalance operation of this interface can be 
invoked with a code like ((Account)c.getFcInterface("account")).getBalance(), where c is a reference to the Component 
interface of the component. 

The Component interface also provides a getFcType operation, which returns the type of the component, as a Type 
reference. This interface defines a minimal notion of type, which actually defines only one operation named 
isFcSubTypeOf, whose role is to test if a given type is a sub type or not of another type. This interface can be extended 
to define more useful type systems for components and component interfaces, such as the one defined in clause 8. 

The org.objectweb.fractal.api.NoSuchInterfaceException exception must be thrown in the getFcInterface operation 
when a requested component interface is not found. 

A component interface implementing Component must be named component. 

5.3 Interface introspection API 
By default the references returned by the getFcInterface and getFcInterfaces operations provide access to the requested 
interfaces, and nothing more. In particular, it is impossible to find the names of these interfaces. In order to provide 
such interface introspection functions, a component ensures that the references returned by the above operations are 
castable into the Interface type (see figure 3). This interface specifies four operations to get the name of a component 
interface, to get its type (as a Type reference), to get the Component interface of the component to which it belongs, and 
to test if the interface is internal or not (see also clause 6.1). 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)10 

package org.objectweb.fractal.api; 
interface Interface { 
   String getFcItfName (); 
   Type getFcItfType (); 
   Component getFcItfOwner (); 
   boolean isFcInternalItf (); 
} 
 

Figure 3: Interface introspection API 

Note that the getFcItfOwner operation allows one to discover all the interfaces of a component from any interface of 
this component, and not only from its interface of type Component. For example, if a is a reference to the Account 
interface of such component, the Component interface of this component can be retrieved with a code like 
((Interface)a).getFcItfOwner(). The result can then be used to get the reference of any other interface of the component. 

NOTE 1: Component and Interface have very distinct roles and should not be mixed up. On the one hand, 
Component is a language interface that is provided by a component just like any other language interface. 
On the other hand, Interface is a language interface that is implemented by all the component interfaces: 
any component interface of such a component implements both a specific language interface, such as 
Account or Component, and Interface. 

NOTE 2: A functional interface such as Account is likely to provide a getName or getOwner operation, as the 
Interface interface. And since a reference of one type should be castable to the other, there is a risk of 
name conflicts (at least in some languages, such as Java). In order to reduce these risks, the Interface 
operations follow the pattern verbFcnoun or verbGCMnoun. This pattern has then been generalized to all 
the Fractal/GCM APIs. 

6 GCM component configuration 
At the next level of control capability, beyond the "introspection" level where components provide interfaces to 
introspect their external features, a GCM component can provide control interfaces to introspect and reconfigure its 
internal features. This clause defines these internal features, and specifies some predefined interfaces to introspect and 
reconfigure them. 

6.1 Internal component structure 
A GCM component is formed out of two parts (see figure 4): a membrane and a content: The membrane (the grey part 
of the Composite component on the figure 4) is made of a set of controllers which expose non-functional interfaces (the 
green interface on the figure 4). The content of a component is either composed of an object or of (a finite number of) 
other components, called sub components, which are under the control of the controller of the enclosing component. 
The GCM model is thus recursive and allows components to be nested (i.e. to appear in the content of enclosing 
components) at an arbitrary level. A component that exposes its content is called a composite component. A component 
that does not expose its content, but has at least one control interface (see below), is called a primitive component. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)11 

 

Figure 4: Internal view of a GCM component 

The controller of a component can have external and internal interfaces. External interfaces are accessible from outside 
the component, while internal interfaces shall be accessible only from the component's sub components. All the external 
interfaces of a component must have distinct names, all its internal interfaces must have distinct names, but a 
component can have an external and an internal interface of the same name. A functional interface is an interface that 
corresponds to a provided or required functionality of a component, while a control interface is a server interface that 
corresponds to a "non functional aspect", such as introspection, configuration or reconfiguration, and so on. By 
convention, an interface is considered to be a control interface if its name is equal to component, or ends with -
controller. All other interfaces are considered to be functional interfaces. 

The controller of a component embodies the control behaviour associated with a particular component. In particular, a 
component controller can: 

• Provide an explicit and causally connected representation of the component's sub components. 

• Intercept incoming and outgoing operation invocations targeting or originating from the component's sub 
components. 

• Superpose a control behaviour to the behaviour of the component's sub components, including suspending, 
check pointing and resuming activities of these sub components. 

Each component controller can thus be seen as implementing a particular semantic of composition for the component's 
sub components. The control capability of a controller is not limited by the model. For instance, it can be mainly 
interception-based as in industrial component frameworks containers for instance; or it can be void (i.e. no control is 
exercised - in this case, the controller can still be useful for it can provide a representation of its content and manifest a 
containment relationship). 

A binding is a communication path between one client interface and one server interface, which means that the 
operation invocations emitted by the client interface should be accepted by the specified server interface. A binding 
between a client interface c and a server interface s of two components C and S must verify one of the following 
constraints (see figure 4): 

• c and s are external interfaces, and C and S have a direct common enclosing component. Such bindings are 
called normal bindings. 

• c is an internal interface, s is an external interface, and S is a sub component of C. Such bindings are called 
export bindings. 

ex
te

rn
al

 in
te

rf
ac

e 

in
te

rn
al

 in
te

rf
ac

e 

content 

controller 

sub component 

normal binding 

import binding 

export 
binding 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)12 

• c is an external interface, s is an internal interface, and C is a sub component of S. Such bindings are called 
import bindings. 

In addition to these structural constraints, which ensure that bindings cannot "cross" component boundaries except 
through interfaces, a binding can be established between a client and a server interface only if the server interface can 
accept at least all the operation invocations that the client interface can emit. In other words, the (language) type of the 
server interface must be a sub type of the type of the client interface (the two interfaces can of course be of the same 
type since a sub typing relation must be reflexive). The last constraint is that a client interface can be bound to at most 
one server interface, while several client interfaces can be bound to the same server interface. This constraint is relaxed 
in the case of collective interface, in particular with client interface having a multicast cardinality. 

Bindings are not concrete GCM elements, and do not appears as such in the APIs. They are abstractions used in the 
definition of the next clauses. 

Clause 6.2 introduce the predefined controllers APIs, namely: Attribute controller, Binding controller, Lifecycle 
controller, Content controller, Collective controller, Multicast controller, Gathercast controller, Migration controller, 
Monitoring controller, Priority controller. 

6.2 Attribute control API 
An attribute is a configurable property of a component, such as the text or color of a button, or the maximum size of a 
pool or cache component. Attributes are generally of primitive type, and are used to configure the state of components 
without needing to use bindings (it is possible to configure the text of a button, for example, by binding this button 
component to a text component; but this is overly complex for what is needed). A component can provide an 
AttributeController interface to read and write its attributes from outside the component (see figure 5). 

package org.objectweb.fractal.api.control; 
public interface AttributeController { } 
 

Figure 5: Attribute control API 

In this case, the component must actually provide a sub interface of this interface, since the AttributeController interface 
is in fact empty. This sub interface must contain one getter and/or setter operation per configurable attribute. For 
example: 

• a component that wants to provide an AttributeController interface for a read only string attribute foo must 
provide a sub interface of this interface containing the following operation: String getFoo(); 

• a component that wants to provide an AttributeController interface for a write only string attribute foo must 
provide a sub interface of this interface containing the following operation: void setFoo(String foo); 

• a component that wants to provide an AttributeController interface to configure two String attributes foo and 
bar must provide a sub interface of this interface containing the following operations: String getFoo(), void 
setFoo(String foo), String getBar() and void setBar(String bar). 

It is a requirement of the present document that setters and getters must follow the lexicographic and typing conventions 
introduced informally in the example above with respect to names and signatures of setters and getters (these 
conventions are those of the Java Beans component model). 

A component interface implementing AttributeController must be named attribute-controller. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)13 

6.3 Binding control API 
A component can provide the BindingController interface to bind and unbind its client interfaces to other components 
through bindings (see figure 6). 

package org.objectweb.fractal.api.control; 
public interface BindingController { 
   String[] listFc (); 
   Object lookupFc (String clientItfName) 
      throws NoSuchInterfaceException; 
   void bindFc (String clientItfName, Object serverItf) 
      throws NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException; 
   void unbindFc (String clientItfName) 
      throws NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException; 
}  
 

Figure 6: GCM Binding control API 

This interface defines the following operations: 

• The listFc operation returns the names of the client interfaces including the internal ones of the component. 
These names are the names that can be passed as first argument to the lookupFc operation. 

• The lookupFc operation takes as parameter the name of a client interface of the component, either external or 
internal, and returns the server interface that is bound to this client interface, or null if there is no such 
interface. As the component to which the server interface belongs supports the interface introspection (see 
clause 5.3), the reference returned by this operation can be cast to org.objectweb.fractal.api.Interface. The 
lookupFc behaviour is undefined if its argument is a multicast interface (see clause 6.7). 

• The bindFc operation takes as parameters the name of a client interface of the component, either external or 
internal, and a server interface of another component, and binds these two interfaces together. As above, the 
server interface can be cast to org.objectweb.fractal.api.Interface, thanks to the introspection capabilities 
provided by the server component. An error shall be thrown if the interface is already bound, unless the client 
interface name refers to a multicast interface. 

• The unbindFc operation takes as parameter the name of a client interface of the component, either external or 
internal, and unbinds this interface. In case of multicast interface, all bindings to this multicast interface are 
removed. 

These operations may throw a org.objectweb.fractal.api.NoSuchInterfaceException exception if a specified client 
interface does not exist, an org.objectweb.fractal.api.control.IllegalLifeCycleException exception when a component is 
not in an appropriate state to perform an operation, and an org.objectweb.fractal.api.control.IllegalBindingException 
exception in case of other errors related to bindings. 

A component interface implementing BindingController must be named binding-controller. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)14 

6.4 Content control API 
A component can provide the ContentController interface to add and remove sub components in this component (see 
figure 7). 

package org.objectweb.fractal.api.control; 
public interface ContentController { 
   Object[] getFcInternalInterfaces (); 
   Object getFcInternalInterface (String itfName) 
      throws NoSuchInterfaceException; 
   Component[] getFcSubComponents (); 
   void addFcSubComponent (Component c) 
      throws IllegalContentException, IllegalLifeCycleException; 
   void removeFcSubComponent (Component c) 
      throws IllegalContentException, IllegalLifeCycleException; 
} 
public interface SuperController { 
   Component[] getFcSuperComponents (); 
} 
 

Figure 7: GCM Content control API 

This interface defines three operations to get the list of sub components of a component, and to add and remove sub 
components in a component: 

• The getFcSubComponents operation returns the list of sub components of the component, as an array of 
Component references. The getFcSuperComponents operation, in the SuperController interface (see figure 7), 
provides the opposite function: it returns the components that contain this component, and which are called its 
super components. 

• The addFcSubComponent operation takes a component as parameter, as a Component reference, and adds this 
component to the component's content. 

• The removeFcSubComponent operation takes a component as parameter, as a Component reference, and 
removes this component from the component's content. 

A given component can be added to several other components. Such a component is said to be shared between these 
components. Shared components are useful, paradoxically, to preserve component encapsulation. Consider, for 
example, a menu and a toolbar components, with an "undo" toolbar button corresponding to an "undo" menu item. It is 
natural to represent the menu items and toolbar buttons as sub components, encapsulated in the menu and toolbar 
components, respectively. But, without sharing, this solution does not work for the "undo" button and menu item, which 
must have the same state (enabled or disabled): these components, or an associated state component, must be put 
outside the menu and toolbar components. With component sharing, the state component can be shared between the 
menu and toolbar components, in order to preserve component encapsulation. Shared components are also useful to 
help separate "aspects" in component based applications.  

Because of shared components, the structure of a GCM component, in terms of direct and indirect sub components, is 
not necessarily a tree, but can be a directed acyclic graph (it cannot be an arbitrary graph, because a component cannot 
be added inside itself or inside one of its direct or indirect sub components). In terms of bindings, this structure can be 
arbitrary, provided it follows the constraints of clause 6.1. In particular, bindings can form cycles. 

The ContentController interface also specifies two operations to get the internal interfaces of the component, which are 
similar to the getFcInterface and getFcInterfaces operations. These operations are useful to bind the internal interfaces 
to sub components. 

The content controller operations may throw a org.objectweb.fractal.api.NoSuchInterfaceException exception if a 
specified client interface does not exist, an org.objectweb.fractal.api.control.IllegalLifeCycleException exception when 
a component is not in an appropriate state to perform an operation and, in case of other errors related to content control, 
an org.objectweb.fractal.api.control.Illegal ContentException exception. 

A component interface implementing ContentController (resp. SuperController) must be named content-
controller (resp. super-controller). 

In order to associate local names to the sub components of a component, similar to the local names of the interfaces of a 
component, a possibility is to ensure that all these sub components provide the NameController interface defined in 
figure 8. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)15 

package org.objectweb.fractal.api.control; 
public interface NameController { 
   String getFcName (); 
   void setFcName (String name); 
} 
 

Figure 8: Name control API 

A component interface implementing NameController must be named name-controller.  

6.5 Life cycle control API 
Changing an attribute or a binding, or removing a sub component, with the above control interfaces, and while 
components are executing, can be dangerous: messages can be lost, the application's state may become inconsistent, or 
the application may simply crash. In order to provide a minimal support to help implement such dynamic 
reconfigurations, a component can provide the LifeCycleController interface (see figure 9). 

package org.objectweb.fractal.api.control; 
public interface LifeCycleController { 
   String STARTED = "STARTED"; 
   String STOPPED = "STOPPED" 
   String getFcState (); 
   void startFc () 
      throws IllegalLifeCycleException; 
   void stopFc () 
      throws IllegalLifeCycleException; 
} 
package org.etsi.uri.gcm.api.control; 
public interface GCMLifeCycleController extends LifeCycleController { 
   void terminateGCMComponent () 
      throws IllegalLifeCycleException; 
} 
 

Figure 9: GCM Life cycle control API 

The LifeCycleInterface interface provides two operations named startFc and stopFc, to start and stop a component 
properly. As for the addFcSubComponent and removeFcSubComponent operations, the semantics of these operations is 
voluntarily as weak as possible, so that many implementations are possible: these operations may or may not be 
recursive, i.e. starting or stopping a component may or may not automatically start or stop all its direct and indirect sub 
components. Likewise, the effect of these operations on the component's state is voluntarily not specified (in fact it 
cannot be specified here, because the APIs defined in the present document do not provide access to this state). In 
particular, the stopFc operation can be seen as a clean up operation invoked before the component is destroyed, or as a 
suspend operation. In the first case the component's state will be erased, while in the second case it will be left 
unchanged. 

Another operation, terminateGCMComponent, is available in the GCMLifeCycleController interface and allows users 
to terminate a GCM component.  

In addition to these operations, the LifeCycleController interface also provides a getFcState operation. This operation 
returns the current state of the component (in a strict sense, i.e. without taking into account its sub components, which 
can have a different execution state), as a String. The STARTED and STOPPED String objects mean that the 
component is started or stopped, respectively. 

In the STARTED state, i.e. just after successful completion of a call to startFc, a component can emit or accept 
operation invocations, which are guaranteed to execute "normally". Note that this does not prevent the unbindFc and 
removeFcSubComponent operations to throw the IllegalLifeCycleException if they are invoked while the component is 
in this state (in order to prevent a component from being reconfigured while it is in an unstable state). 

In the STOPPED state, i.e. right after successful completion of a call to stopFc, a component cannot emit operation 
invocations, and can accept operation invocations only through control interfaces. Operation invocations to the 
functional interfaces of a stopped component are accepted and will be executed when the component is restarted. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)16 

However, some components may require very different life cycles. Of course, completely arbitrary life cycles can be 
specified by providing completely new interfaces, distinct from the LifeCycleController interface. More commonly, life 
cycles can be adapted from the basic one by extending the LifeCycleController interface to introduce new states and 
transitions or even to change the transitions of the basic life cycle. In this case, it is a requirement of the present 
document that the semantics associated to the STARTED and STOPPED states should be preserved. 

The org.objectweb.fractal.api.control.IllegalLifeCycleException exception may be thrown when a requested transition, 
in a life cycle automaton, is not valid. 

A component interface implementing LifeCycleController or GCMLifeCycleController must be named lifecycle-
controller. 

6.6 Collective interface control API 
In order to provide facilities for parallel programming, GCM defines collective interfaces by adding new cardinalities in 
the specification of interfaces, namely multicast (see clause 6.7) and gathercast (see clause 6.8). The role and use of 
multicast and gathercast interfaces are complementary. Multicast interfaces are used for parallel invocations, whereas 
gathercast interfaces are used for synchronization and gathering purposes. Collective interfaces give the possibility to 
manage a group of interfaces as a single entity (which is not the case with a collection interface, where the user can only 
manipulate individual members of the collection), and they expose the collective nature of a given interface. The 
method signatures of client and server interfaces are different when using collective interfaces. Thus, in order to give a 
way to ensure the compatibility between such interfaces, the component controller of collective interfaces can extend 
the CollectiveInterfaceController interface (see figure 10). 

package org.etsi.uri.gcm.api.control; 
public interface CollectiveInterfaceController { 
   public void ensureGCMCompatibility (InterfaceType itfType, Interface itf) 
      throws IllegalBindingException; 
} 
 

Figure 10: Collective interface control API 

The CollectiveInterfaceController interface provides a single operation named ensureGCMCompatibility. As its name 
implies, this operation ensures the type compatibility between a collective interface and a component interface which 
has to be bound to the collective interface. This operation takes as parameters the 
org.objectweb.fractal.api.type.InterfaceType of the collective interface and the org.objectweb.fractal.api.Interface of the 
component interface. This operation does not return anything but throws an 
org.objectweb.fractal.api.control.IllegalBindingException exception when trying to bind two incompatible interfaces. 

6.7 Multicast control API 
Multicast interfaces provide abstractions for 1-to-n communications, i.e. transform a single invocation into a list of 
invocations.  

A multicast server interface transforms each single invocation into a set of invocations that are forwarded either to 
implementation code of a primitive component, or to bound server interfaces of internal components. A multicast client 
interface transforms each single invocation coming either from implementation code of a primitive component or from 
an internal component into a set of invocations to bound server interfaces of external components. 

When a single invocation is transformed into a set of invocations, these invocations are forwarded to a set of connected 
server interfaces. The semantics of the propagation and the distribution invocation parameters are customizable, and the 
result of an invocation on a multicast interface - if there is a result - is a list of results by default but can also be 
customizable. Invocations forwarded to the connected server interfaces may occur in parallel, which is one of the main 
reasons for defining this kind of interface: it enables parallel invocations, with automatic distribution of invocation 
parameters. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)17 

In order to manage its multicast interfaces, a component can provide the MulticastController interface (see figure 11). 

package org.etsi.uri.gcm.api.control; 
public interface MulticastController extends CollectiveInterfaceController { 
   public void unbindGCMMulticast (String multicastItfName, Object serverItf) 
      throws NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException; 
   public boolean isBoundTo (String multicastItfName, Object[] serverItfs) 
      throws NoSuchInterfaceException; 
   Object[] lookupGCMMulticast (String clientItfName) 
      throws NoSuchInterfaceException; 
} 
 

Figure 11: Multicast control API  

In addition to extending the CollectiveInterfaceController interface, the MulticastController interface defines one 
operation to manage the multicast interface: the unbindGCMMulticast operation. This operation removes a binding 
between a multicast interface and a server interface. Parameters of this operation are the name of the multicast interface 
and the reference on the server interface which can be cast to org.objectweb.fractal.api.Interface as previously. This 
operation may throw an org.objectweb.fractal.api.NoSuchInterfaceException exception if the specified multicast 
interface does not exist, an org.objectweb.fractal.api.control.IllegalLifeCycleException exception when the component 
is not in an appropriate state to perform the operation, and an org.objectweb.fractal.api.control.IllegalBindingException 
exception in case of other errors related to bindings. 

Two other operations are also available: 

• The isBoundTo operation checks if a multicast interface is bound to one of the given server interfaces. This 
operation takes as parameters the name of the multicast interface and an array of references on server 
interfaces which can be cast to org.objectweb.fractal.api.Interface, and returns a boolean indicating if one of 
these server interfaces is bound on the multicast interface. This operation may be useful to know if the given 
multicast interface of a component is bound on a component. 

• The lookupGCMMulticast operation takes as parameter the name of a multicast interface of the component 
and returns the server interfaces that are bound to this multicast interface, or null if there is no such interface. 

These operations may throw an org.objectweb.fractal.api.NoSuchInterfaceException exception if the specified multicast 
interface does not exist. 

A component interface implementing MulticastController must be named multicast-controller. 

6.8 Gathercast control API 

A gathercast interface is an abstraction for n-to-1 communications, i.e. transforms a list of invocations into a single 
invocation. 

A gathercast interface coordinates incoming invocations before continuing the invocation flow: it may define 
synchronization barriers and may gather incoming data. Returned values are redistributed to the invoking components. 
Gathering of incoming data and redistribution are fully customizable. Both client and server interfaces may have a 
gathercast cardinality. A gathercast client interface transforms a set of invocations coming from client interfaces of 
inner components or from the implementation code of the component, into a single invocation. A gathercast server 
interface transforms a set of invocations coming from client interfaces of external components into a single invocation 
to one server interface of an inner component, or to the implementation code in case of a primitive component. 

Gathering operations require knowledge of the participants (i.e. the clients of the gathercast interface) in the collective 
communication. As a consequence, in the context of gathercast interfaces, bindings to gathercast interfaces are 
bidirectional links. In other words, a gathercast interface is aware of which interfaces are bound to it. 

In order to manage its gathercast interfaces, a component can provide the GathercastController interface (see figure 12). 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)18 

package org.etsi.uri.gcm.api.control; 
public interface GathercastController extends CollectiveInterfaceController { 
   public void notifyAddedGCMBinding (String gathercastItfName, Component owner, String 
clientItfName) 
      throws NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException; 
   public void notifyRemovedGCMBinding (String gathercastItfName, Component owner, String 
clientItfName) 
      throws NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException; 
   public List<Object> getGCMConnectedClients (String gathercastItfName) 
      throws NoSuchInterfaceException; 
} 
 

Figure 12: Gathercast control API 

In addition to extending the CollectiveInterfaceController interface, the GathercastController interface specifies the 
following operations: 

• The notifyAddedGCMBinding operation notifies a component that a binding has been performed on one of its 
gathercast interfaces. This operation takes as parameters the gathercast interface name, a reference on the 
component which is bound to this gathercast interface and the client interface name of this component bound 
to the gathercast interface. 

• The notifyRemovedGCMBinding operation notifies a component that a binding has been removed from one of 
its gathercast interfaces. This operation takes as parameters the gathercast interface name, a reference on the 
component which has removed its binding to this gathercast interface and the client interface name of this 
component which was bound to the gathercast interface. 

• The getGCMConnectedClients operation returns a list of references on the interfaces connected to a given 
gathercast interface of a component. The single parameter of this operation is the gathercast interface name. 

These operations may throw an org.objectweb.fractal.api.NoSuchInterfaceException exception if the specified 
gathercast or client interface does not exist. The notifyAddedGCMBinding and notifyRemovedGCMBinding operations 
may also throw an org.objectweb.fractal.api.control.IllegalLifeCycleException exception when the component is not in 
an appropriate state to perform the operation and an org.objectweb.fractal.api.control.IllegalBindingException 
exception in case of other errors related to bindings. 

A component interface implementing GathercastController must be named gathercast-controller. 

6.9 Migration control API 
In distributed software systems, it is common to need to migrate some processes or some data from a node to another 
one. Within the context of the GCM, one may also need to do a migration on a component. In order to do that, a 
component can provide the MigrationController interface which allows the migration of this component from the node 
where it has been deployed to another one (see figure 13). 

package org.etsi.uri.gcm.api.control; 
public interface MigrationController { 
   public void migrateGCMComponentTo (String nodeURL) 
      throws MigrationException;  
   public void migrateGCMComponentTo (URL nodeURL) 
      throws MigrationException; 
   public void migrateGCMComponentTo (Object node) 
      throws MigrationException; 
} 
 

Figure 13: Migration control API 

The MigrationController interface defines three operations, all named migrateGCMComponentTo, to do such a 
migration. The only difference between these operations is the way to address the destination node: the first operation 
takes as parameter the String representing the URL of the destination node, the second one takes as parameter the 
java.net.URL object corresponding to the URL of the destination node and at last, the third operation takes as parameter 
a Java object that references the destination node itself. 

The org.etsi.uri.gcm.api.control.MigrationException exception may be thrown if the destination is not valid or when an 
error occurs during the migration. 

A component interface implementing MigrationController must be named migration-controller. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)19 

6.10 Monitoring control API 
Be informed in real time on the Quality of Service (QoS) of a component may be very useful. For instance, if a 
component has a bad QoS, then the user can decide to reconfigure the application by replacing this component by 
another one and thus improve the global performance. In term of GCM component, the QoS is defined as a set of 
various statistics (not specified in the present document) collected for each method of each interface of a component. 
For example, the collected statistics may contain the last execution time for a request of a given method or the average 
waiting time for a request for a given method. In order to get such statistics, a component can provide the 
MonitorController interface (see figure 14). 

package org.etsi.uri.gcm.api.control; 
public interface MonitorController { 
   public void startGCMMonitoring (); 
   public void stopGCMMonitoring (); 
   public void resetGCMMonitoring (); 
   public boolean isGCMMonitoringStarted (); 
   public Object getGCMStatistics (String itfName, String methodName, Class<?>[] parameterTypes) 
      throws NoSuchInterfaceException, NoSuchMethodException; 
   public Map<String, Object> getAllGCMStatistics (); 
} 
 

Figure 14: Monitoring control API  

The MonitorController interface provides two kinds of operations: one kind for managing the monitoring and the other 
one to get statistics. 

The monitoring management is done with the operations startGCMMonitoring, stopGCMMonitoring, 
resetGCMMonitoring and isGCMMonitoringStarted, respectively to start the monitoring, stop it, reset it (i.e. delete all 
collected statistics) and check if the monitoring is running. These operations do not take parameters and do not return 
anything except the isGCMMonitoringStarted operation which returns a boolean indicating whether the monitoring is 
started. 

Regarding the access to the statistics, the operation named getGCMStatistics can be used to retrieve the statistics of a 
method of a component interface. It takes as parameters the interface and the method name and the parameter types of 
the method. This operation then returns a Java object which contains the statistics corresponding to the requested 
method. The org.objectweb.fractal.api.NoSuchInterfaceException exception may be thrown when a specified interface 
does not exist or a java.lang.NoSuchMethodException exception if a specified method does not exist. 

In addition of that, another operation, getAllGCMStatistics, provides all the statistics collected by the MonitorController 
interface. These statistics are returned through a java.util.Map object where the key is a single ID for each method of the 
component and allows to get a Java object containing the statistics of the method corresponding to this ID. 

A component interface implementing MonitorController must be named monitor-controller. 

6.11 Priority control API 
By default, a component treats its requests, functional or non functional, in a FIFO order (First In First Out). Sometimes 
some non functional requests, like for instance life cycle management requests or reconfiguration requests, need to be 
executed before others. In order to define different priority levels for non functional requests, a component can provide 
the PriorityController interface (see figure 15). 

package org.etsi.uri.gcm.api.control; 
public interface PriorityController { 
   public enum RequestPriority { 
      F, NF1, NF2, NF3; 
   } 
   public void setGCMPriority (String itfName, String methodName, Class<?>[] parameterTypes, 
RequestPriority priority) 
      throws NoSuchInterfaceException, NoSuchMethodException; 
   public RequestPriority getGCMPriority (String itfName, String methodName, Class<?>[] 
parameterTypes) 
      throws NoSuchInterfaceException, NoSuchMethodException; 
} 
 

Figure 15: Priority control API  



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)20 

The PriorityController interface defines an enum type, named RequestPriority, corresponding to the different levels of 
priority the requests of a method of a component interface may have: 

• F, priority for functional requests. Requests always go at the end of the request queue. 

• NF1, default priority of non functional requests. Requests also always go at the end of the request queue. 

• NF2, priority for prioritized non functional requests. Requests pass the functional requests into the request 
queue but respect the order of other non functional requests. 

• NF3, priority for most prioritized non functional requests. Requests pass all the other requests into the request 
queue. 

This interface also specifies two operations to set and get the priority of requests of a given method. 

The operation to set the priority of requests of a given method, named setGCMPriority, takes as parameters the interface 
name, the method name, the parameter types of the method and the value of the enum type RequestPriority which 
corresponds to the priority to set to the method requests.This operation does not return anything. 

The operation to get the priority of requests of a given method, named getGCMPriority, also take as parameters the 
interface name, the method name and the parameter types of the method. This operation then returns the value of the 
enum type RequestPriority of requests of the asked method. 

The org.objectweb.fractal.api.NoSuchInterfaceException exception may be thrown when a specified interface does not 
exist or a java.lang.NoSuchMethodException exception if a specified method does not exist. 

A component interface implementing PriorityController must be named priority-controller. 

7 GCM component runtime instantiation 
The frameworks presented in the previous clauses allow one to use, introspect, configure and reconfigure existing 
components. In order to be useful, they must be completed with a framework to create new components. This clause 
defines such a framework, based on factories. 

7.1 Factories API 
In the instantiation framework specified in this clause, components are created by other components called component 
factories. The GCM model distinguishes between generic component factories, which can create several kinds of 
components, and standard component factories, which can create only one kind of components, all with the same 
component type. Generic and standard component factories can provide the GenericFactory interface and the Factory 
interfaces, respectively (see figure 16 - note that, in accordance with the rule defined in clause 6.1, both interfaces are 
functional interfaces, and not control interfaces). 

package org.objectweb.fractal.api.factory; 
interface GenericFactory { 
   Component newFcInstance (Type t, Object controllerDesc, Object contentDesc) 
      throws InstantiationException; 
} 
interface Factory { 
   Type getFcInstanceType (); 
   Object getFcControllerDesc (); 
   Object getFcContentDesc (); 
   Component newFcInstance () throws InstantiationException; 
} 
 

Figure 16: Instantiation API 

The GenericFactory interface provides only one operation named newFcInstance. This operation takes as parameter the 
type of the component to be created, a descriptor of its controller part, and a descriptor of its content part. This 
operation creates a component corresponding to the given description, and returns its Component interface. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)21 

The Factory interface also provides a newFcInstance operation, but this operation does not take any parameter, which 
reflects the fact that all the components created by this operation have the same type, and the same controller and 
content descriptors. This information can be retrieved with the three other operations of this interface, named 
getFcInstanceType, getFcControllerDesc and getFcContentDesc. 

In both interfaces, the component type must describe only the functional interfaces of the components to be created. The 
control interfaces of the components to be created must indeed be specified in the controller descriptors. The exact 
semantics of the controller and content descriptors, in both interfaces, is however left unspecified in this version of the 
GCM component model specification. 

Note that, in both interfaces, the newFcInstance operation does not necessarily create a new component instance each 
time it is invoked. It can also, for example, always return the same instance (this is the singleton pattern). The 
components created by a factory must be created in the same address space as the factory component. But the exact 
location of the created components, in this address space, is voluntarily not specified. In particular, it is not ensured that 
the components created by a factory are automatically added to the parent component(s) of the factory component. 

The org.objectweb.fractal.api.factory.InstantiationException exception must be thrown when a component cannot be 
created, in the newFcInstance operations of the Factory and GenericFactory interfaces. 

A component interface implementing GenericFactory must be named generic-factory. A component interface 
implementing Factory must be named factory. 

7.2 Templates 
A template is a special kind of standard factory component that creates components that are quasi "isomorphic" to itself. 
More precisely, the components created by a template component must have the same functional client and server 
interfaces as the template component (except for the Factory interface, which is provided by the template, but not 
necessarily by its instances), but can have arbitrary control interfaces. The components created by a template 
component also have the same attributes as the template. A template component may contain several sub template 
components, bound together through bindings. The components created by such a template component are components 
that contain as many sub components as sub templates in the template, bound together as the sub templates are bound in 
the template. If some sub templates are shared, the corresponding sub components in the components created by the 
template will also be shared. 

If a generic factory component is able to create template components, then it must be possible to create a template 
component with a operation invocation, on this generic factory, of the form newFcInstance(type, 
templateControllerDesc, {controllerDesc, contentDesc}), where type describes the functional client and server 
interfaces of the components that the template will create, templateControllerDesc is the descriptor of the controller part 
of the template component to be created, and controllerDesc and contentDesc are the descriptors of the controller and 
content parts of the components that the template will create (the brackets denote an array). 

Template components are useful in only one case, namely when several identical components must be created from a 
textual representation, such as an Architecture Description Language definition. In this case, instead of parsing the 
textual representation each time an instance must be created, it can be more efficient to parse the text file(s) and to 
create a corresponding template only once, and then to instantiate the template each time an instance is needed. In all 
other cases, using templates is equivalent, but generally less efficient, than not using them. 

7.3 Bootstrap 
According to the above framework, components are created from component factories. But how are created component 
factories? They can be created from other component factories, but this leads to an infinite recursion. In order to stop it, 
a bootstrap component factory, which does not need to be created explicitly, and which is accessible from a 
"well-known" name, is necessary. This bootstrap component factory must be able to create several kinds of 
components, including component factories. In other words, it must provide the GenericFactory interface. 

This bootstrap component must be accessible from the getBootstrapComponent static method, defined in the 
org.etsi.uri.gcm.api.GCM class. This method must not take any parameter, and must return the Component interface of 
the bootstrap component. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)22 

8 GCM Typing 
This clause defines a simple type system for components and component interfaces. This type system reflects the main 
characteristics of component interfaces, introduced in clause 5, i.e. their name, their language type, and their role (client 
or server). It also introduces two new characteristics named contingency and cardinality. 

8.1 Component interfaces contingency and cardinality 
The contingency of an interface indicates if the functionality corresponding to this interface is guaranteed to be 
available or not, while the component is running: 

• The operations of a mandatory interface are guaranteed to be available when the component is running. This 
semantic is obvious for a server interface. For a client interface, which does not have a functionality of its own, 
it means that the interface must be bound, and that it must be bound to a mandatory interface. As a 
consequence, a component with mandatory client interfaces cannot be started until all these interfaces are 
bound to other mandatory interfaces. 

• The operations of an optional interface are not guaranteed to be available. This can happen, for a server 
interface, when the complementary internal interface is not bound to a sub component. This can also happen, 
for a client interface, when this interface is not bound. 

The cardinality of an interface type T may be: 

• The singleton cardinality which means that a given component must have exactly one interface of type T. 

• The collection cardinality which means that a given component may have an arbitrary number of interfaces of 
type T. All these interfaces must have a name that begins with the name specified in T (see clause 8.2). Since 
there is a priori an infinite number of such interfaces, these interfaces cannot all be created at the same time: 
they must be created lazily, during invocations of the getFcInterface and bindFc operations.  

EXAMPLE: If the name specified in T is listener, then an invocation to getFcInterface("listener11") or to 
bindFc("listener11", s) will create an interface named listener11, if it does not already exist. 

 This interface may be removed automatically when it is no longer used by any binding. 

• The multicast cardinality which means that a given component must have exactly one interface of type T but 
transforms each invocation into a set of invocations (see clause 6.7). 

• The gathercast cardinality which means that a given component must have exactly one interface of type T but 
transforms a list of invocations into a single invocation (see clause 6.8). 

Mandatory are designed for components that absolutely require other components to work. Optional interfaces are 
useful for components which may also use other components, if they are present. For example, a parser component 
absolutely needs a lexer component, but can work with or without a logger component. Collection interfaces are useful 
for components with a variable number of required components of the same type, such as a menu component and its 
associated menu item components, a model component and its listener components (in the MVC model), and so on. 
Multicast interfaces are useful to enable parallel invocations, with automatic distribution of invocation parameters. 
Gathercast interfaces are useful to define synchronization barriers and to gather incoming data. 

8.2 Type system API 
In the type system specified here, a component type is just a set of component interface types. A component type is 
represented by the ComponentType interface (see figure 17). This interface defines a getFcInterfaceTypes operation, 
which returns the set of component interface types in this component type, as an array. It also defines a 
getFcInterfaceType operation, which returns the component interface type whose name is given as parameter (this 
operation must throw the NoSuchInterfaceException if the requested interface type does not exist). 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)23 

A component interface type is represented by the InterfaceType interface which may be cast to GCMInterfaceType. 
Such a type is made of a name, a signature, a role, a contingency and a cardinality. The name is the name of component 
interfaces of this type. The signature is the name of the language interface type that is implemented by component 
interfaces of this type (for a client interface, an empty signature means that this client interface can be connected to any 
server interface). The role indicates if component interfaces of this type are client or server interfaces. The contingency 
indicates if the functionality of interfaces of this type is guaranteed to be available or not. Finally, the cardinality 
indicates if the interfaces of this type have a singleton, collection, multicast or gathercast cardinality. 

Component and component interface types can be created by using a type factory, represented by the TypeFactory 
interface or the GCMTypeFactory interface. Indeed the TypeFactory interface provides two operations to create 
component interface types and component types whereas the GCMTypeFactory interface, which extends the 
TypeFactory interface, provides one more operation to create component interface types. A component interface 
implementing TypeFactory or GCMTypeFactory must be named type-factory. 

package org.objectweb.fractal.api.type; 
interface ComponentType extends Type { 
   InterfaceType[] getFcInterfaceTypes (); 
   InterfaceType getFcInterfaceType (String itfName) throws NoSuchInterfaceException; 
} 
interface InterfaceType extends Type { 
   String getFcItfName (); 
   String getFcItfSignature (); 
   boolean isFcClientItf (); 
   boolean isFcOptionalItf (); 
   boolean isFcCollectionItf (); 
} 
interface TypeFactory { 
   InterfaceType createFcItfType (String name, String signature, boolean isClient, 
      boolean isOptional, boolean isCollection) throws InstantiationException; 
   ComponentType createFcType (InterfaceType[] itfTypes) throws InstantiationException; 
} 
package org.etsi.uri.gcm.api.type; 
interface GCMInterfaceType extends InterfaceType { 
   String getGCMCardinality (); 
   boolean isGCMSingletonItf (); 
   boolean isGCMCollectionItf (); 
   boolean isGCMMulticastItf (); 
   boolean isGCMGathercastItf (); 
} 
interface GCMTypeFactory extends TypeFactory { 
   InterfaceType createGCMItfType (String name, String signature, boolean isClient, 
      boolean isOptional, String cardinality) throws InstantiationException; 
} 
 

Figure 17: Typing API 

A component of type T must have as many external interfaces as described in T (and, in particular, in the interface 
cardinalities), and all these interfaces must have the name, language type and role described in the corresponding 
component interface type. Likewise, if this component also exposes its content, and in particular its internal interfaces, 
then it must also have, at most, as many internal functional interfaces as described in T, and each of these interfaces 
must have the name, language type and role described in the corresponding component interface type. This implies that 
each internal functional interface has a complementary external interface of the same name, signature, contingency and 
cardinality, and of opposite role (but the converse is not necessarily true). Note that this property is ensured by the type 
system specified in this clause: in the general case, nothing more than what is explicitly stated in clause 8.1 is ensured 
(and so an internal interface may not have a complementary external interface). 

Note that if, in general, the number of interfaces of a Fractal component may change during its life time, the number of 
interfaces of a Fractal component that uses the type system presented here cannot change during its lifetime (except for 
interface collections). Indeed the ComponentType and InterfaceType interfaces do not offer any operations to modify 
an existing type, and the other interfaces specified in the present document do not offer an operation to change the type 
of a component or of an interface. But a GCM component may perfectly provide a setFcType operation, if needed, since 
the GCM model is extensible. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)24 

8.3 Sub typing relation 
This clause defines a sub typing relation for component and component interface types, based on substitutability. This 
relation provides a sufficient (but not necessary) condition such that if a component type T1 is a sub type of T2, then a 
component of type T1 can replace a component of type T2 in any environment, this environment (other components and 
bindings) being left unchanged, and both components being seen as black boxes. 

An interface type I1 is a sub type of a server interface type I2 if the following conditions are satisfied: I1 has the same 
name and the same role as I2; the language interface corresponding to I1 is a sub interface of the language interface 
corresponding to I2; if the contingency of I2 is mandatory, then the contingency of I1 is mandatory too; if the 
cardinality of I2 is collection, then the cardinality of I1 is collection too. 

An interface type I1 is a sub type of a client interface type I2 if the following conditions are satisfied: I1 has the same 
name and the same role as I2; the language interface corresponding to I1 is a super interface of the language interface 
corresponding to I2; if the contingency of I2 is optional, then the contingency of I1 is optional too; if the cardinality of 
I2 is collection, then the cardinality of I1 is collection too; if the cardinality of I2 is multicast, then the cardinality of I1 
is multicast too. 

A component type T1 is a sub type of a component type T2 if and only if each client interface type defined in T1 is a 
sub type of an interface type defined in T2, and each server interface type defined in T2 is a super type of an interface 
type defined in T1. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)25 

Annex A (normative): 
Java API 
The GCM Java API is contained in an archive file (ts_102830v010101p0.zip) which accompanies the present 
document, and containing the Java source files for the API. The archive file is named Fractal-GCM-Management-
API.zip 

This archive file contains the Fractal GCM Management API expressed in the Java programming language. 

It contains: 

• LICENSE.txt:   The license under which this module is (GNU GPLv2) 

• src:   The Java source folders of the GCM Management API, organised in two parts: 
- Under org/objectweb/fractal/api/, the original Fractal API specification 
- Under org/etsi/uri/gcm/api/, the GCM extensions to Fractal. 

Below is the detail of the packages and Java Interfaces found in the two parts: 

• src/org/objectweb/fractal/api/ which specifies the component and component interface 
concepts. 
NoSuchInterfaceException.java    Type.java 
Interface.java         Component.java 

• src/org/objectweb/fractal/api/control/ which specifies some Fractal component interfaces to 
control components. 
ContentController.java      SuperController.java     LifeCycleController.java 
NameController.java       AttributeController.java    BindingController.java 
IllegalBindingException.java     IllegalLifeCycleException.java  IllegalContentException.java 

• src/org/objectweb/fractal/api/factory/ which specifies some basic component interfaces to 
instantiate components. 
InstantiationException..java     GenericFactory.java     Factory.java 

• src/org/objectweb/fractal/api/type/ which specifies a basic type system for components and 
component interfaces. 
ComponentType.java       TypeFactory.java      InterfaceType.java 

• src/org/etsi/uri/gcm/api/ which provides a class to get a bootstrap component. 
GCM.java 

• src/org/etsi/uri/gcm/api/control/ which specifies some GCM component interfaces to control 
components. 
GCMLifeCycleController.java    MonitorController.java    MulticastController.java 
MigrationException.java      MigrationController.java   GathercastController.java 
PriorityController.java      CollectiveInterfaceController.java 

• src/org/etsi/uri/gcm/api/type/ which defines GCM type system specificities for component 
interfaces. 
GCMInterfaceType.java      GCMTypeFactory.java 

• src/org/etsi/uri/gcm/util/ which provides utilities to facilitate GCM API's use. 
GCM.java 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)26 

Annex B (informative): 
Namespaces 
This annex describes how the respective namespaces of Fractal and GCM should be used and managed for the present 
documents and its future versions. 

In a JAVA API (Application Programming Interface), namespaces are used to structure the names of the Java objects 
(interfaces, classes, exceptions, etc.). 

B.1 Description 
The GCM Management API contains two parts: 

• The first part consists in a set of Fractal interface definitions. These interfaces lie in the org.objectweb.fractal 
namespace. They have been previously adopted by the fractal community as the official Fractal specification 
(that is not a standard). We have reproduced them (in full and unchanged) inside the GCM Management API 
in order to make the standard self-contained. 

• The second part is a set of GCM definitions, lying in the org.etsi.uri.gcm namespace. In term of Fractal 
conformance levels, the GCM definitions are extensions of the Fractal specifications. 

Both parts are present in the archive file referred in annex A. 

In order to use the GCM Management API, for example for building and compiling an implementation of the GCM, it 
is sufficient to use the archive file from annex A. There is no need to get any additional interface definitions form 
Fractal. 

But of course, having the Fractal interfaces included in the GCM Management API allows the GCM implementation 
developers to use existing implementations of the Fractal API. 

B.2 Versioning 
The definitions lying in the org.etsi.uri.gcm namespace should not be extended or modified. 

Evolution of the API can happen in two ways: 

• ETSI (meaning some TG of ETSI in charge of the GCM standard, being TCGRID or some followers technical 
group) may decide to issue a new version of the GCM Management API.  

 In this case, ETSI will create a new namespace, e.g. org.etsi.uri.gcm-v2, and not modify the existing gcm 
namespace content. 

• The Fractal community may issue a new version of the Fractal API specification. 

 In this case, ETSI may decide to stay with the current version of the GCM, built on top of the current version 
of Fractal. 

 Or ETSI may decide to follow the Fractal evolution, and build a new version of GCM incorporating the new 
Fractal version. This new CM will also be set in a new etsi namespace like in the previous case. 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)27 

Annex C (informative): 
Examples 
This annex shows how a Java GCM platform can be used, in order to illustrate how the APIs defined in the present 
document can be used to create, assemble and reconfigure component configurations. 

The example used throughout this clause is a very simple application made of two primitive components inside a 
composite component (see figure C.1). The first primitive component is a "server" component that provides an interface 
s of type S. The other primitive component is a "client" component, bound to the previous server interface. 

 

Figure C.1: A sample component based application 

C.1 Instantiation 
The above components can be instantiated as follows. The first step is to create the component and component interface 
types. In order to do this, we get a reference to the bootstrap component, and then to its TypeFactory interface: 

Component boot = GCM.getBootstrapComponent(); 
TypeFactory tf = (TypeFactory)boot.getFcInterface("type-factory"); 
We can now create the types of the root, client and server components as follows: 
ComponentType rType = tf.createFcType(new InterfaceType[] { 
   tf.createFcItfType("m", "M", false, false, false) 
}); 
ComponentType cType = tf.createFcType(new InterfaceType[] { 
   tf.createFcItfType("m", "M", false, false, false), 
   tf.createFcItfType("s", "S", true, false, false) 
}); 
ComponentType sType = tf.createFcType(new InterfaceType[] { 
   tf.createFcItfType("s", "S", false, false, false) 
}); 
 

We could now create the components directly, but we will use intermediate template components here, in order to show 
how they can be used. These component templates can be created as follows: 

GenericFactory gf = (GenericFactory)boot.getFcInterface("generic-factory"); 
 
Component rTmpl = gf.newFcInstance( 
   rType, "compositeTemplate", new Object[] {"composite", null}); 
Component cTmpl = gf.newFcInstance( 
   cType, "template", new Object[] {"primitive", "CImpl"}); 
Component sTmpl = gf.newFcInstance( 
   sType, "template", new Object[] {"primitive", "SImpl"}); 
 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)28 

Here the template (resp. compositeTemplate) descriptor is supposed to describe components with a BindingController 
interface (resp. with a BindingController and a ContentController interfaces). The primitive and composite descriptors 
are supposed to describe similar components, but with an additional LifeCycleController interface. Finally, CImpl and 
SImpl are the names of the Java classes of the GCM components that will be encapsulated in the client and server 
components. The CImpl class, for example, has the following form: 

public class CImpl implements M, BindingController { 
   private S s; 
   public String[] listFc () { return new String[] { "s" }; } 
   public Object lookupFc (String name) { 
      if (name.equals("s")) return s; 
      return null; 
   } 
   public Object bindFc (String name, Object itf) { 
      if (name.equals("s")) s = (S)itf; 
   } 
   public Object unbindFc (String name) { 
      if (name.equals("s")) s = null; 
   } 
   // ... 
} 
 

We can then either instantiate each template one by one, put the resulting primitive components inside the composite 
component, connect all these components, and finally start them. But we can also put the primitive templates inside the 
composite template, connect these templates together, and then instantiate the whole application by just instantiating the 
composite template component. This is what we do here. 

We begin by putting the primitive template components inside the composite one: 

ContentController cc = (ContentController)rTmpl.getFcInterface("content-controller"); 
cc.addFcSubComponent(cTmpl); 
cc.addFcSubComponent(sTmpl); 
 

We then bind the internal client interface m of the composite template to the server interface m of the client template: 
 
((BindingController)rTmpl.getFcInterface("binding-controller")) 
   .bindFc("m", cTmpl.getFcInterface("m")); 
 

Finally, we bind the client interface s of the client template to the server interface s of the server template: 

((BindingController)cTmpl.getFcInterface("binding-controller")) 
   .bindFc("s", sTmpl.getFcInterface("s")); 
 

At this stage the template components are like the components depicted in figure C.1, with just an additional Factory 
interface. Now that the template components have been created and bound to each other, the application components 
can be instantiated and bound to each other automatically, by just calling the newFcInstance method on the root 
template component: 

Component r = ((Factory)rTmpl.getFcInterface("factory")).newFcInstance(); 
 

All the application components can now be started automatically by just calling the startFc method on the root 
application component (here we assume a stronger semantic than the default one for the startFc method, i.e. we assume 
it to be recursive - see clause 6.5): 

((LifeCycleController)r.getFcInterface("lifecycle-controller")).startFc(); 
 

C.2 Reconfiguration 
Let us suppose we want to dynamically change the server component. In order to do this, we need to unbind the client 
component, remove the server component, create a new server component, add the server component in the composite 
component, and finally bind the client component to the new server. But the binding and component removals cannot be 
done while the client and the composite component, respectively, are not stopped. So we must first stop these 
components (here again we assume this method to be recursive; we also assume that it does not change the states of the 
components, and that method calls to functional interfaces while the components are stopped are only suspended until 
the components are restarted): 

((LifeCycleController)r.getFcInterface("lifecycle-controller")).stopFc(); 
 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)29 

We then retrieve the references of the client and server components: 

Component c = ((Interface)((BindingController)r. 
   getFcInterface("binding-controller")).lookupFc("m")).getFcItfOwner(); 
Component s = ((Interface)((BindingController)c. 
   getFcInterface("binding-controller")).lookupFc("s")).getFcItfOwner(); 
 

We can now unbind the client and server components, and remove the server component from the composite 
component (we assume a strong semantic for removeFcSubComponent): 

((BindingController)c.getFcInterface("binding-controller")).unbindFc("s"); 
((ContentController)r.getFcInterface("content-controller")).removeFcSubComponent(s); 
 

We can now create the new server component. Instead of using a template component for doing that, as in clause C.1, 
we use here the bootstrap generic factory directly: 

Component newS = gf.newFcInstance(sType, "primitive", "NewSImpl"); 
 

We can now add this new component in the composite component, bind it to the client component, and finally resume 
the application's execution (we make the same semantic hypotheses as in clause C.1 for the addFcSubComponent and 
startFc methods): 

((ContentController)r.getFcInterface("content-controller")).addFcSubComponent(newS); 
((BindingController)c.getFcInterface("binding-controller")).bindFc("s", newS); 
((LifeCycleController)r.getFcInterface("lifecycle-controller")).startFc(); 
 



 

ETSI 

ETSI TS 102 830 V1.1.1 (2010-03)30 

History 

Document history 

V1.1.1 March 2010 Publication 

   

   

   

   

 


	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Grid Component Model (GCM)
	5 Basic GCM component introspection
	5.1 External component structure
	5.2 Component introspection API
	5.3 Interface introspection API

	6 GCM component configuration
	6.1 Internal component structure
	6.2 Attribute control API
	6.3 Binding control API
	6.4 Content control API
	6.5 Life cycle control API
	6.6 Collective interface control API
	6.7 Multicast control API
	6.8 Gathercast control API
	6.9 Migration control API
	6.10 Monitoring control API
	6.11 Priority control API

	7 GCM component runtime instantiation
	7.1 Factories API
	7.2 Templates
	7.3 Bootstrap

	8 GCM Typing
	8.1 Component interfaces contingency and cardinality
	8.2 Type system API
	8.3 Sub typing relation

	Annex A (normative): Java API
	Annex B (informative): Namespaces
	B.1 Description
	B.2 Versioning

	Annex C (informative): Examples
	C.1 Instantiation
	C.2 Reconfiguration

	History

